Evaluación del impacto laboral y macroeconómico de tres escenarios contrastados de retiro o reconversión de las centrales a carbón en Chile

Adrien Vogt-Schilb Economista Cambio Climático avogtschilb@iadb.org

Agenda

1. De dónde venimos nosotros: investigación internacional y del BID sobre la transición energética

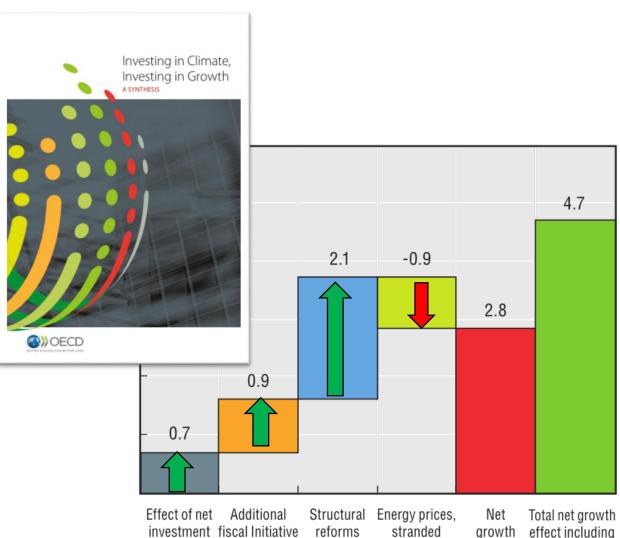
2. Objetivos, equipo y metodología de este estudio

3. Resultados de este estudio

4. Discusión y preguntas

Mantener el aumento de la temperatura media muy por debajo de 2°C con respecto a los niveles preindustriales, y proseguir los esfuerzos para limitar ese aumento de la temperatura a 1,5 °C

¿Qué podemos hacer para reducir las emisiones mundiales de carbono para cumplir el Acuerdo de París?


Un mundo con cero emisiones netas es **técnicamente posible**, basado en 4 pilares

Clarke, L., et 2014. "Assessing Transformation Pathways." In Climate Change 2014: Mitigation of Climate Change, Working Group III Contribution to the IPCC 5th Assessment Report. [Edenhofer, O., R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel and J.C. Minx (Eds.)]. Cambridge, United Kingdom and New York, NY, USA.: Cambridge University Press.

OECD. 2017. Investing in Climate, Investing in Growth. Paris: OECD Publishing. https://doi.org/10.1787/9789264273528-en.

Un mundo con cero emisiones netas es consistente con el crecimiento económico

& green

innovation

assets &

regulatory

settings

effect

estimated

avoided climate

damages

to decarbonise supportive

of the

transition

Investigadores de la división del clima del BID tienen el propósito de apoyar a los países de la región con 2 retos en el manejo de la transición de aquí para allá

- 1. El manejo de la economía política de la transición hacia cero emisiones
- 2. El alineamiento de los esfuerzos de corto plazo (incluyendo las NDCs) con el objetivo de cero emisiones netas en el largo plazo

Llegar a cero emisiones puede ser políticamente desafiante



Consumidores vulnerables

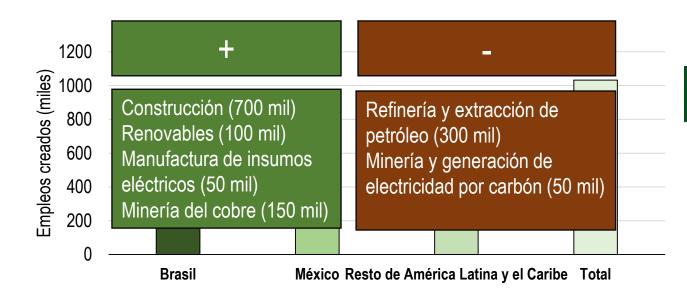
Activos abandonados

Combustibles fósiles sin explotar

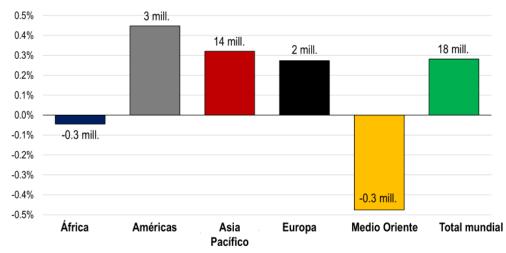
Se requiere análisis para alinear las políticas de reducción de emisiones con el desarrollo sostenible y hacerlas políticamente viables

Minimizar costos políticos y sociales

- Cómo la eliminación de subsidios a la energía puede financiar la protección social que beneficia a los hogares vulnerables
- Cómo se puede diversificar el crecimiento económico y los ingresos fiscales fuera del petróleo
- Cómo la selección de instrumentos de políticas y NDC reforzadas pueden minimizar los activos abandonados
- Cómo las políticas de planificación, protección social, desarrollo de competencias y desarrollo local pueden minimizar los impactos laborales


Maximizar los beneficios políticos y de desarrollo

- Cómo el transporte público puede hacer que las ciudades sean más atractivas
- Cómo precios al carbono pueden reducir los déficits fiscales y financiar la infraestructura


Ya existe evidencia regional sobre el impacto laboral de la transición energética

Sostenibilidad medioambiental con empleo

Empleo en 2030 associado con sostenibilidad energética, comparado con un escenario de continuación de tendencias actuales

Nota: Diferencia en empleo total en porcentaje entre los escenarios de 2°C y 6°C de la AEI hacia 2030. Source: Estimaciones OIT basadas en Exiobase v3.

Que la transición a la sostenibilidad sea una transición JUSTA

Las Directrices de política para una transición justa hacia economías y sociedades sostenibles para todos

- Marco de políticas
- Resultado de diálogo tripartito
- Nueve áreas de políticas
 - Macroeconomía v crecimiento
 - · Política industrial y sectorial
 - · Políticas relativas a las empresas
 - Desarrollo de competencias
- Seguridad y salud en el trabajo
- Protección social
- Políticas activas del mercado de trabajo
- Derechos
- Diálogo social y tripartismo

Agenda

1. Investigación internacional y del BID sobre la transición energética

2. Objetivos, equipo y metodología de este estudio

3. Resultados de este estudio

4. Discusión y preguntas

Objetivos de este estudio

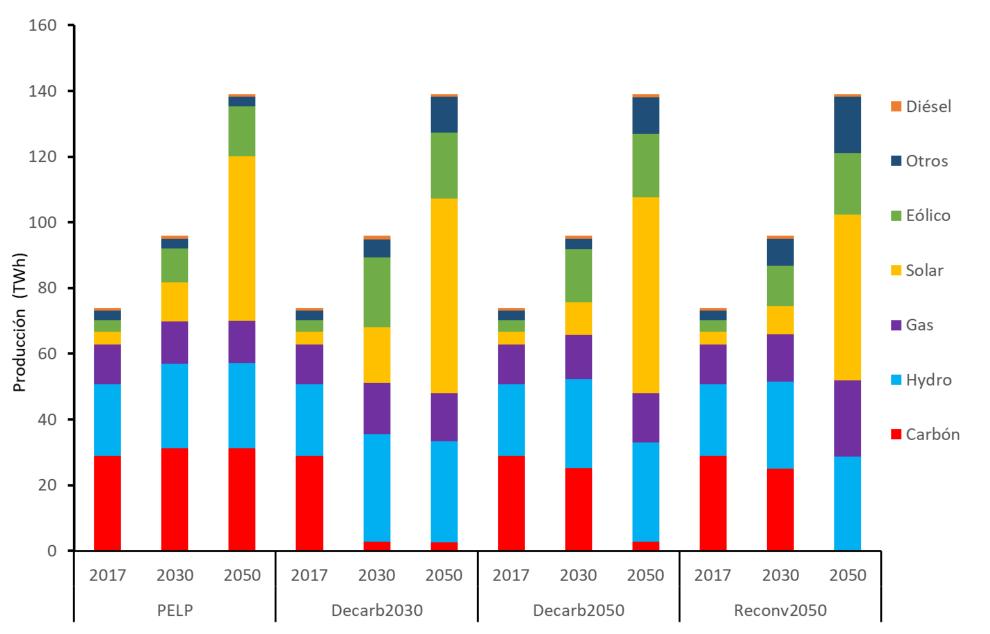
 Evaluar el impacto laboral y macroeconómico del retiro o la reconversión de centrales a carbón en Chile

- Realizar un análisis a nivel nacional
 - Este estudio no cubre impactos locales ni opciones de políticas. Estos temas se cubren en la siguiente presentación

Equipo

- Adrien Vogt-Schilb, economista cambio climático del BID en Washington
- Kuishuang Feng, Profesor Asociado especialista de análisis insumo-producto en la universidad de Maryland
- Alicia Viteri, Consultora Externa para el BID
- Jennifer Doherty-Bigara, especialista cambio climático del BID para cono sur

Se agradecen insumos de Guillermo Montt, Organización Internacional del Trabajo


Metodología y limitantes

- Se toman en cuenta empleos directos e indirectos usando cálculo insumo-producto (Garrett-Peltier, 2017;
 OIT, 2018; Perrier and Quirion, 2016; Simas and Pacca, 2014)
 - Los empleos directos incluyen empleados de las empresas generadoras y subcontratos
 - Los empleos indirectos incluyen proveedores en otros sectores
- Datos internacionales y nacionales:
 - **GTAP Power 9**: base de matrices insumo producto (MIP) internacional
 - -68 sectores por país
 - -única MIP con **detalle subsectorial en el sector electricidad**: carbón, gas, hidro, eólico, diésel, solar, TyD, y otros

 $\mathbf{F} = \hat{\mathbf{s}}(\mathbf{I} - \mathbf{A})^{-1}\mathbf{Y}$

- -Datos de 2011 y basados en comparaciones internacionales
- MIP nacional 2014 y ENE 2016: valor, empleo y compensación total en 21 sectores extrapolado a 2017
- Encuesta de generadoras: empleo en las generadoras a carbón en Chile
- Proyecciones del ministerio de energía: costo nivelado de la electricidad (total y fracción de capital) por fuente
- Los datos que tenemos no permiten distinguir empleos en construcción y operación / mantenimiento de centrales

Analizamos 4 escenarios a 2030 y 2050

El Ministerio de Energía proporcionó 4 escenarios contrastantes

PELP: Escenario de referencia (Planificación Energética de Largo Plazo)

Decarb2030:

escenario extremo de stress del sistema eléctrico

Decarb2050:

escenario relajado de transición mas progresiva

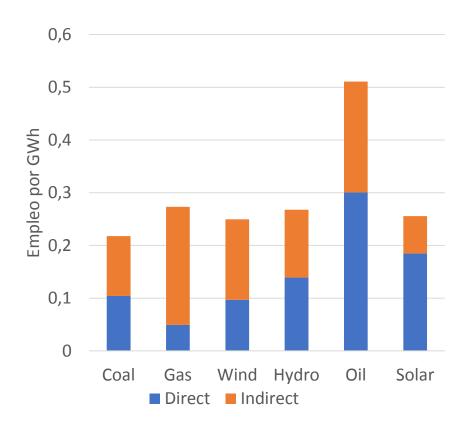
Reconv2050:

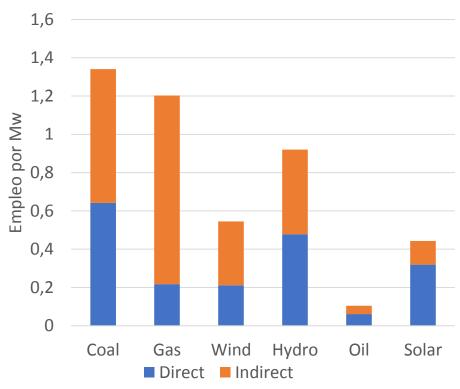
escenario de reconversión de las centrales a carbón en centrales a gas o biomasa

Agenda

1. Nuestro contexto: investigación internacional y del BID sobre la transición energética

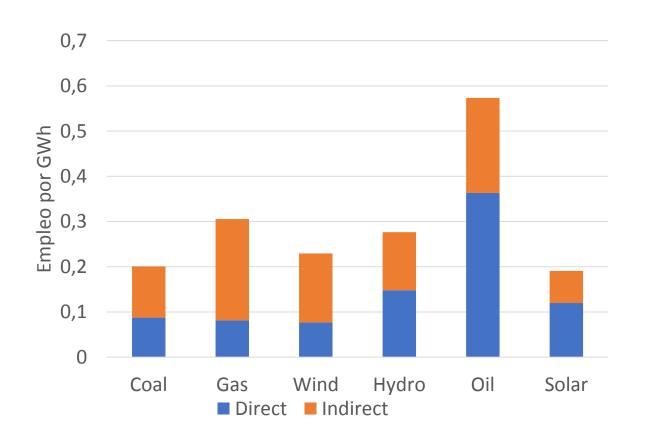
2. Objetivos, equipo y metodología de este estudio

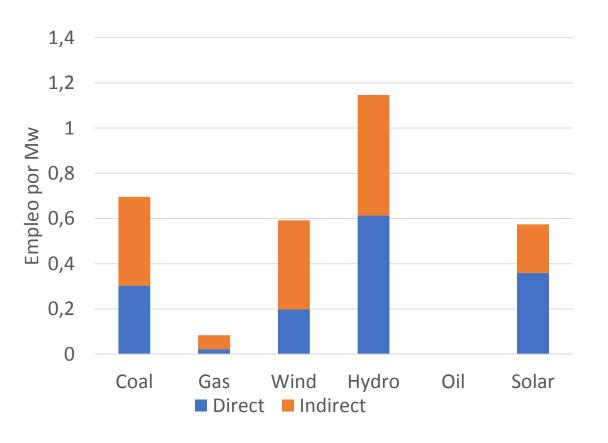

3. Resultados de este estudio

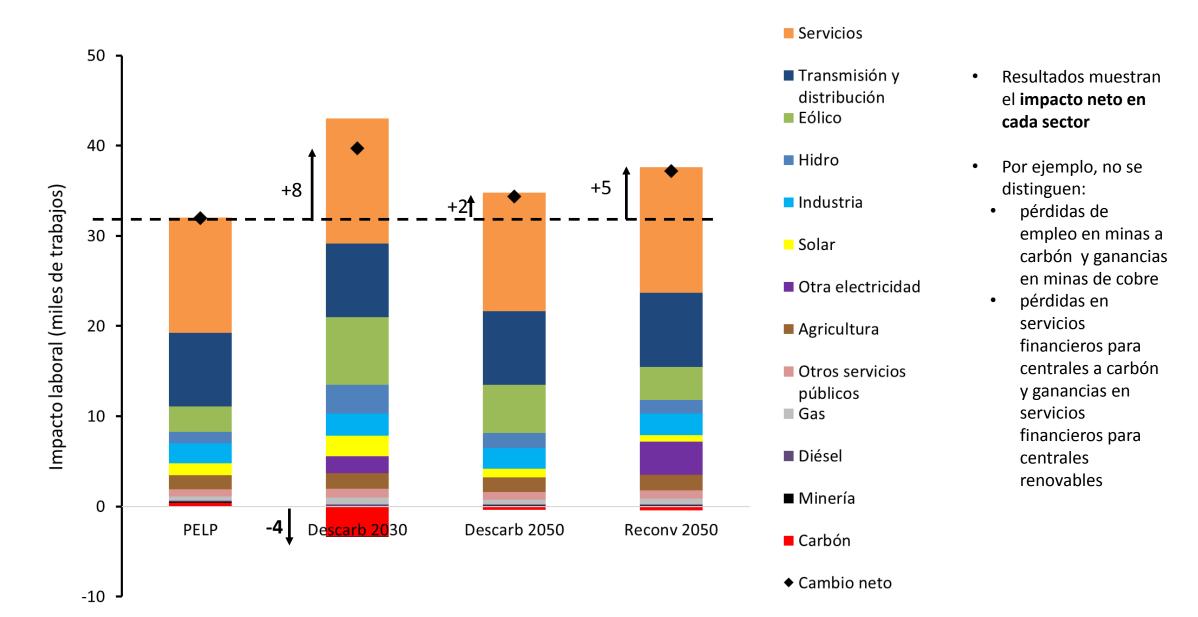

4. Discusión y preguntas

Resultados de este estudio en 5 mensajes

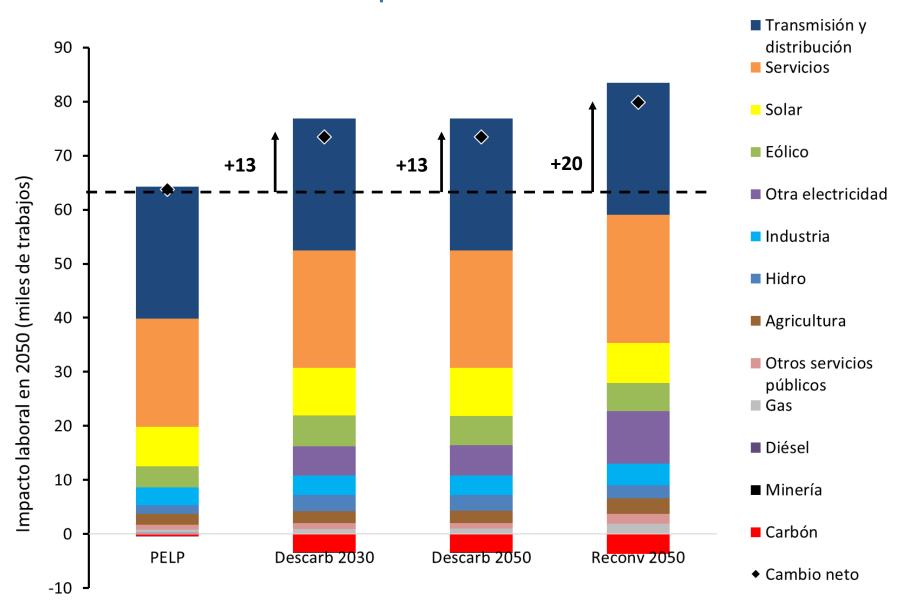
- 1. Los cuatro escenarios (con y sin retiro) son consistentes con desarrollo económico y labora del país:
 - entre **32 y 40 mil empleos** directos e indirectos más en 2030 que en 2017
 - entre USD \$1.7 y \$1.8 mil millones más en valor agregado en 2030 que en 2017
- 2. El retiro o la reconversión **brindan más empleos** (+2 mil a +8 mil) y **más valor agregado** (+\$50 a +\$120 millones) que el escenario de **referencia (sin retiro y/o reconversión de unidades a carbón).**
- 3. Números netos esconden ganadores y perdedores.
 - Hasta 4 mil empleos directos desplazados en las centrales eléctricas de carbón para 2030 o 2050, según el escenario.
 - 13 a 20 mil empleos generados al 2050 comparado con el escenario de referencia, principalmente en producción de energía renovable, industria y servicios.
- 4. Estos impactos son pequeños de un punto de vista macroeconómico
 - Chile genera hasta 40 mil empleos por trimestre (INE, 2018)
 - \$1,7 mil millones representan menos del 0,8% del PIB actual, cuando el mismo crecerá a al menos un 2,5% anual entre hoy y 2030 (BCC 2015, OECD 2014).
- 5. Estos impactos pueden ser grandes para las comunidades y trabajadores de las zonas implicadas
 - Un estudio separado proporciona lecciones aprendidas para la gestión del impacto laboral a nivel local.

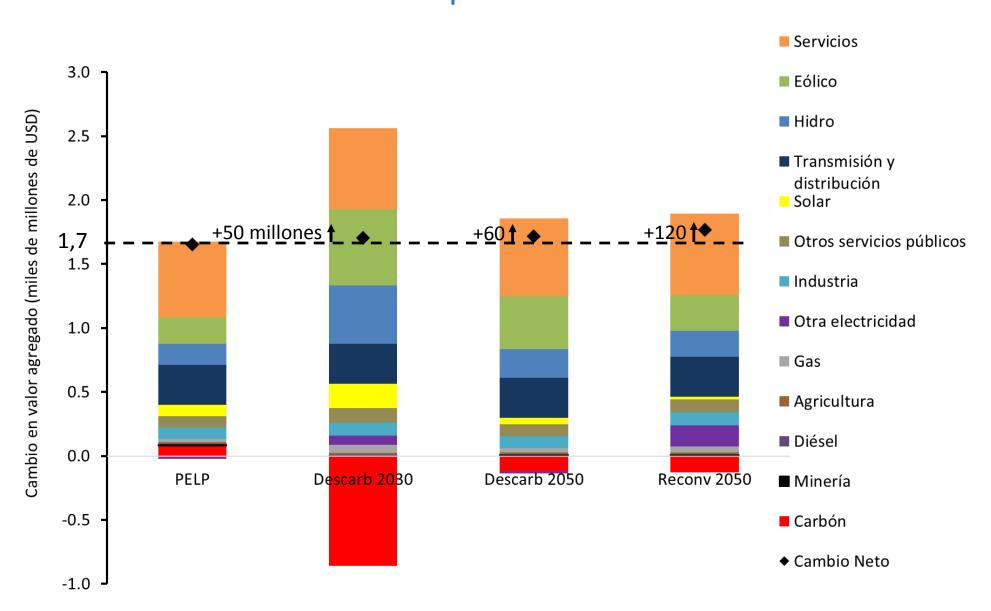

Nuestros datos para 2017 muestran diferencias de empleo por tecnología




- Los empleos directos incluyen empleados de las empresas y subcontratos
- Los empleos indirectos incluyen proveedores en otros sectores, usando cálculo de insumoproducto
- Basado en base de dato internacional GTAP Power
 9 armonizada con MIP
 2014 y ENE 2016
- No se distinguen empleos en construcción o operación / mantenimiento

Las proyecciones muestran menos empleo por unidad de generación eléctrica en 2050, por reducción de costo en el tiempo




Retiro o reconversión brindan más empleos al año 2030 que el escenario sin retiro, pero crean ganadores y perdedores

Al 2050 los resultados son similares, con un rol más importante del sector solar

El retiro o reconversión brinda marginalmente más valor agregado en el 2030 que el escenario sin retiro

Estos impactos no son significativos a nivel macroeconómico, aunque pueden ser importantes a nivel local

Comparados con el tamaño de la **economía nacional**, **los impactos** del retiro o reconversión **son pequeños**

- 4 mil empleos a 2030 se comparan a los 40 mil empleos por trimestre generados en Chile (ENE 2018)
- \$50-60 millones de valor agregado son 0.02% del PIB hoy en día, mientras que se espera que el PIB crecerá de más de 2,5% anual entre hoy y 2030.

Estos impactos pueden ser grandes para las comunidades y trabajadores impactados

El estudio que se presentará a continuación analiza la gestión del impacto laboral a nivel local.