Planning of electrical transmission in Brazil and HVDC technology as an alternative for an efficient electrical operation

International Seminar of HVDC Electrical Transmission System Chile

Superintendência de Transmissão de Energia Elétrica

Presented by: Dourival Carvalho

Santiago, Chile November 10, 2020

- EPE Empresa de Pesquisa Energética
- Itaipu HVDC ± 600 kV system
- An integrated network
- HVDC Madeira ± 600 kV system
- HVDC Belo Monte ± 800 kV system
- HVDC new system possibility
- Transmission Planning 10 years projection

EPE – Empresa de Pesquisa Energética

www.epe.gov.br

Since 2004

State-owned company linked to the Brazilian Mines and Energy Ministry

We develop integrated energy studies and statistics aiming to subsidise the formulation, deployment and assessment of the national energy policy.

EPE – Empresa de Pesquisa Energética

Transmission Planning Process carried out by EPE

Integrated Planning: Generation, Transmission, Socio & Environmental Aspects

EPE – Empresa de Pesquisa Energética

Types of Studies Before Auction

➢ Technical, Economic, Social & Environmental Feasibility Studies - R1

- Load Flow
- Stability studies
- Preliminary Environmental Assessment
- Economic evaluation
- Short-Circuit analysis

Engineering Studies - R2

- Electromangetic Transients
- AC and DC Transmission line and equipment preliminary specifications
- Control models for special equipment

Social & Environmental Assessment - R3

- Referential definition: transmission lines routes and substations locations
- Technical Compliance with Existing Grid R4
 - Protection, Monitoring and Control Requirements Descriptions
 - Sharing of existing infrastructure

Property and Land Analysis- R5

Land and property costs

Large expansion and integration: an interconnected network (few exceptions)

HVDC Madeira 600 kV transmission system

~7,0 GW, main load center at ~2350 km

Alternatives initially selected :

- DC (2 x 3150 MW bipoles);
- Hybrid: DC bipole (3150 MW) + 2 x AC 500 kV parallel lines;
- AC: 3 x AC 765 kV parallel lines (further analysis discarded)

DC and Hybrid alternatives competed in a concession auction (Nov/2008):

DC Alternative, the winner with annual revenues smaller (7.15% average) than the established ceiling.

HVDC Madeira transmission system

Two HVDC ± 600 kV bipoles (3,150 MW) and two back-to-back (400 MW) to feed local loads

Different concessions Different manufacturers Back-to back with CCC technology

The longest lines in the world

- 3 projects along the route
- Guy type towers
- Lines 10 km apart
- Each line capable to transmit with two parallel converters

Transmission Planning and HVDC in Brazil HVDC Belo Monte ± 800 kV system

Constraints and Strategic Decisions

≻8.000 ~ 10.000 MW to be transmitted

very long distance ~ 2.500 km

>500 kV AC network, along route

>no need of load integration along route

> an economic and technical comparison between technology alternatives = HVDC

HVDC Belo Monte ± 800 kV system

Reversal transmission

Transmission Planning and HVDC in Brazil HVDC Belo Monte ± 800 kV system

Planning results

- > 2 x 4000 MW bipoles, 800 kV
- > embedded HVDC system
- reversal transmission
- > two separated power injections in the Southeast region
- > not imposing a specific number of 12 pulse converter bridges per pole

HVDC system new possibility

Motivation (I)

Strong enhancement of variable renewable generation (VRG) mostly in the Northeast region

Actual installed capacity (2020) Wind + Solar: 18,706 MW (11,2%) Hydro: 108,495 MW (65,8%) Total: 165,039 MW

Transmission Planning and HVDC in Brazil HVDC system new possibility

Motivations II

Reinforce the main north-south transmission corridor for national energy security

Improve network controllability

Increase AC system capacity to absorb additional VRG

Potential to reduce thermal generation during dry seasons in the Southeast

Embedded and not associated to a specific large generation project, but to exportation of large concentration of VRG in NE region

Transmission Planning and HVDC in Brazil HVDC system new possibility : 800 kV HVDC Graça Aranha - Silvânia

First stage of the planning studies : Report R1

	Normal Power Direction: Graça Aranha to	Reverse Power Direction: Silvânia to Graça
A B A	Silvânia	Aranha
	Nominal DC power: 4,000 MW at Graça Aranha	Nominal DC power: ~3,300 MW at Silvânia
	Nominal voltage at Graça Aranha: ± 800 kV	Nominal voltage at Silvânia: ± 800 kV
	Silvânia operating as inverter: 3890 MW	
	Minimum power transmitted: 10% of nominal power	
	Overload capacity: 33% during half hour after pole or bipole lost; 50 % during 5 seconds	
	Operation modes: bipolar, monopolar with metallic return, monopolar with ground return.	
	Minimum DC voltage: 0.7 of nominal voltage	
	Maximum DC voltage: 830 kV	
and a state of	Transmission line length: 1,500 km	
	Conductor: 6 ACSR, 1590 MCM "Lapwing", per pole.	

B4-101 CIGRE 2018

Currently in planning review

dourival.carvalho@epe.gov.br

Obrigado!

f /epe.brasil Ø epe_brasil 9 @epe_brasil

► /EPEBrasil **in** Empresa de Pesquisa Energética

Praça Pio X , 54 20091-040 – Centro – Rio de Janeiro www.epe.gov.br

