

Análisis de escenarios de decarbonización Lecciones aprendidas

Índice

Consideraciones generales

Descarbonización en el largo y corto plazo

Análisis de escenarios de descarbonización

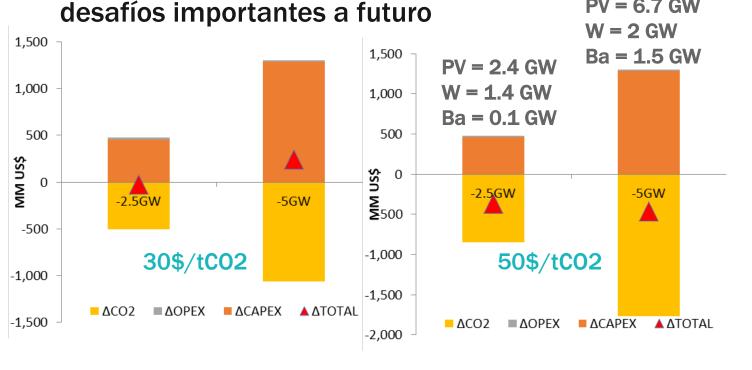
- Escenario 1: CSP competitivo a 50 USD/MWh
- Escenario 2: retiro programado por antigüedad

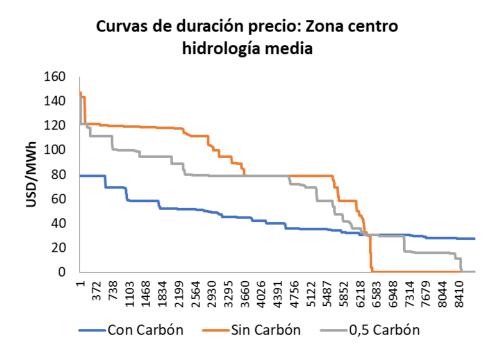
Preguntas

- Impacto del impuesto al CO2 en el despacho (32.5 USD/tCO2)
- Efecto del pago por suficiencia

Conclusiones y Trabajo futuro

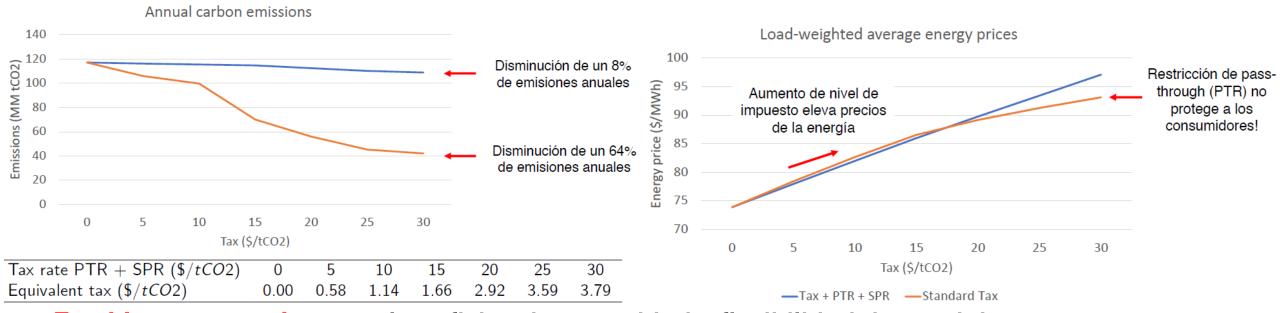
Descarbonización en el largo plazo 2050


- En el largo plazo hay múltiples matrices con poca (o nula) participación de centrales de carbón que permiten suministrar el sistema eléctrico chileno de manera económica y confiable
- Una de las ventajas económicas no reconocidas de una matriz más limpia es la menor dependencia (o exposición al riesgo) de mercados internacionales de combustibles fósiles
- Curiosamente existe una (pseudo) coincidencia entre (i) matrices económicamente óptimas más aversas al riesgo y que no internalizan CO2, con (ii) aquellas neutras al riesgo y que si internalizan CO2


	Installed Capacity [GW]		Installed Capacity [GW]	Cero carbón es el resultado económico de
Coal	2.46	Coal	0.00	reconocer:
LNG	1.09	LNG	2.22	 los riesgos de la
Oil	0.03	Oil	0.00	dependencia
Solar PV	23.36	Solar PV	22.07	energética
Wind	12.79	Wind	21.66	<u>o</u>
Run-of-river	3.25	Run-of-river	3.25	- las externalidades
Hydro reservoir	3.39	Hydro reservoir	3.39	derivadas del CO2
Pumped storage hydro	7.84	Pumped storage hydro	8.16	derivadas der CO2
Expected Investment and Operation Cost	8862 [MM\$]	Expected Investment and Operation Cost	8989 [MM\$]	
EVaR	9420 [MM\$]	CVaR	9082 [MM\$]	
Standard Deviation	245 [MM\$]	Standard Deviation	7 [MM\$]	

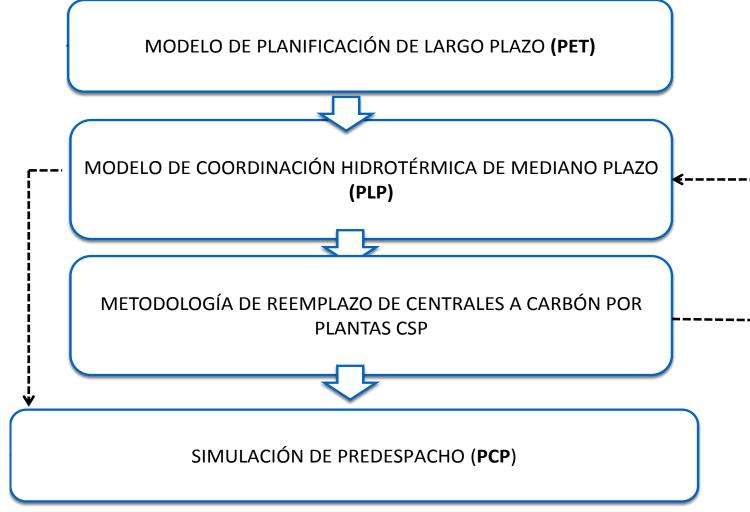
Descarbonización en el corto plazo 2025

- Es factible técnicamente retirar las centrales a carbón en el corto plazo de manera confiable en la medida que exista una coordinación significativa entre los retiros y las plantas entrantes en tecnologías de rápida instalación
- La optimalidad económica de dicha decisión es altamente dependiente del costo unitario de las emisiones de carbono: Descarbonización en el CP podría ser una opción económica
- La mayor volatilidad de los precios spots y el tratamiento específico del mecanismo utilizado para internalizar los costos asociados a las externalidades de emisiones de CO2 representan desafías importantes a futuro.



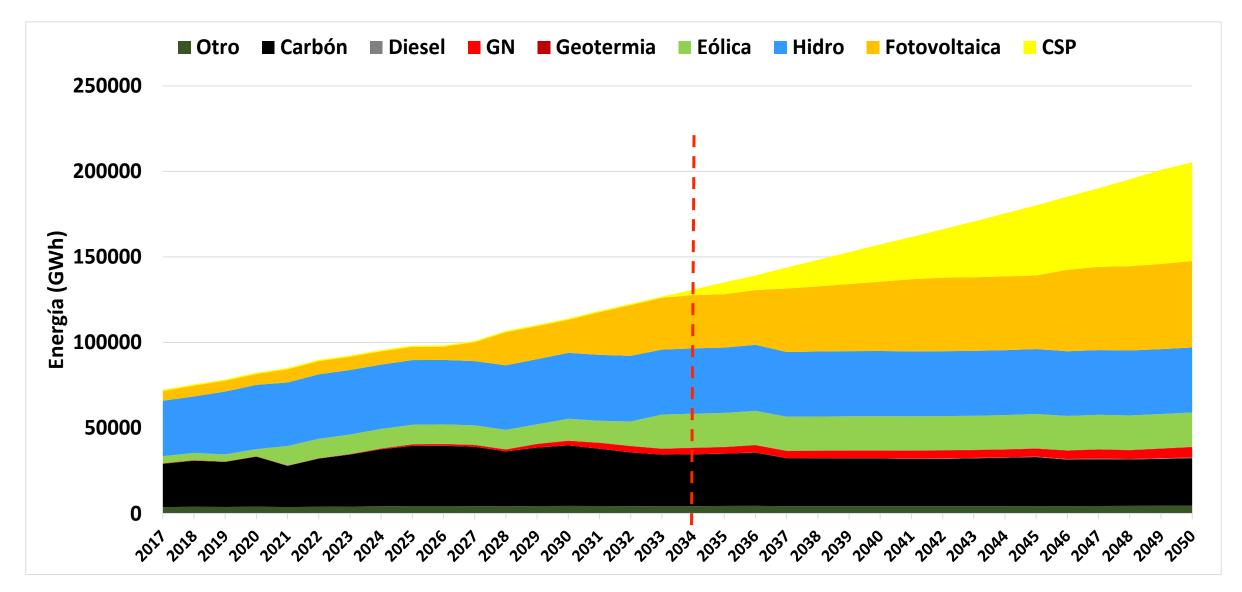
Unas palabras con respecto al diseño de mercado

- No existe planificación centralizada de generación (aunque las acciones del mercado si se pueden guiar y coordinar, no forzar!)
- Existen gran incertidumbre, con muchos escenarios posibles que podrían ser eficientes, cuyos niveles de optimalidad se van a ir revelando a medida que pase el tiempo
- Establecer un impuesto eficiente al CO2: el mecanismo de impuesto a las emisiones de CO2 en Chile es inusual, ineficiente, abatiendo menos emisiones (en el corto y largo plazo), incentivando menos generación renovable y a mayores costos y precios para el consumidor en el largo plazo.



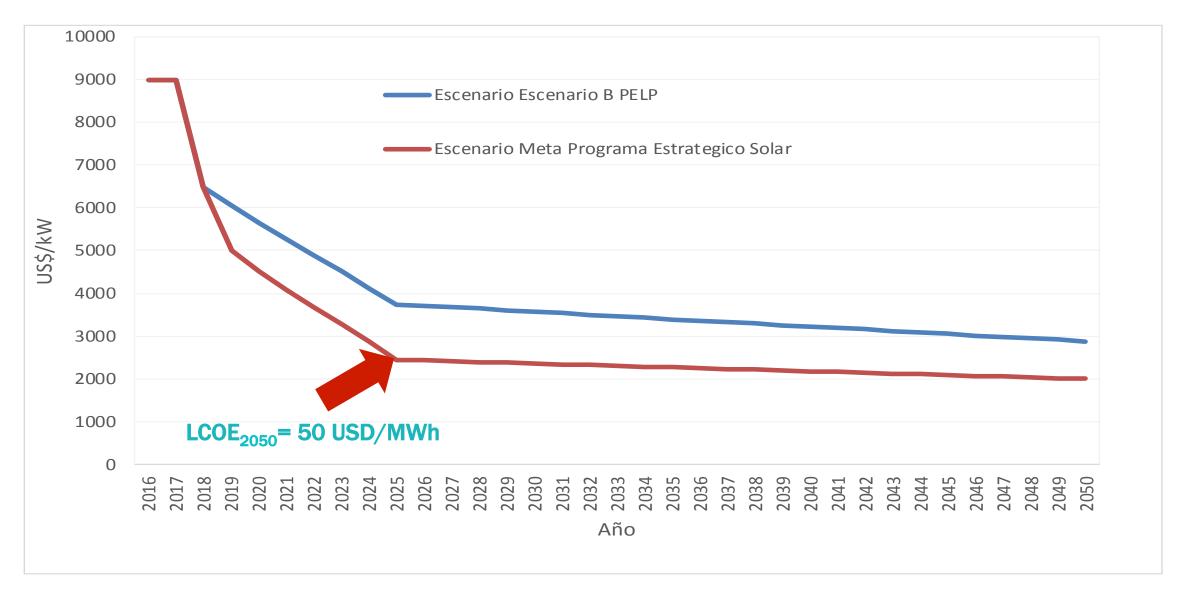
Establecer mercados para la suficiencia, seguridad y flexibilidad de suministro

Metodología de análisis



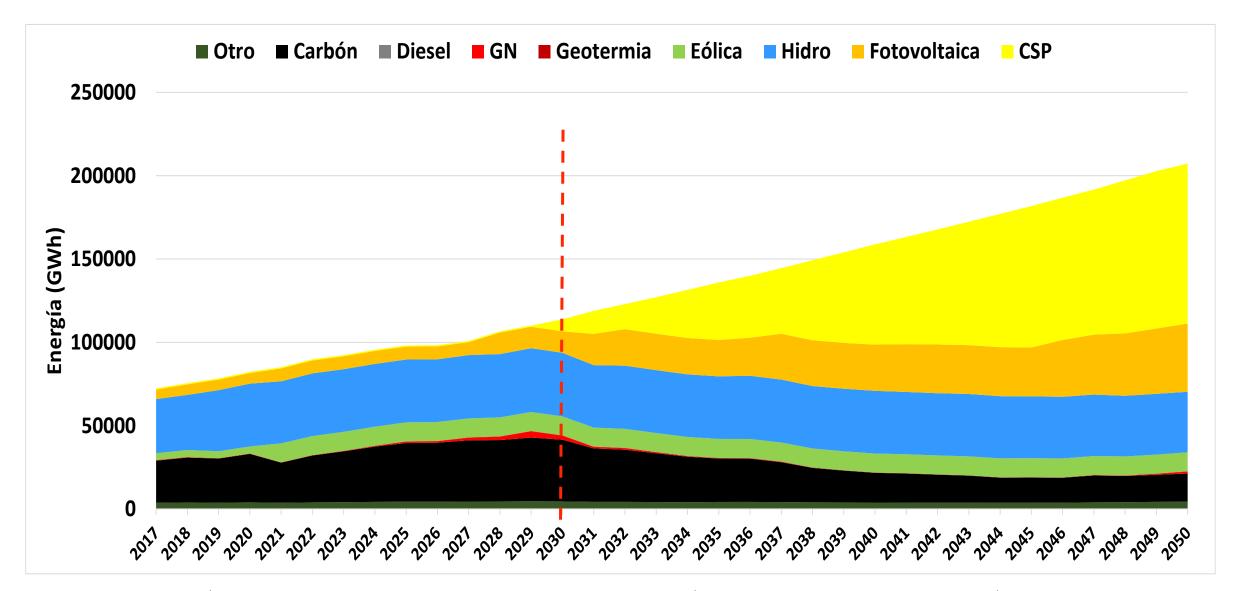
Fuente: Centro de Energía Universidad de Chile

Escenario Base: Caso B de la PELP



Fuente: Proceso de Planificación de Largo Plazo (PELP) del Ministerio de Energía 2016

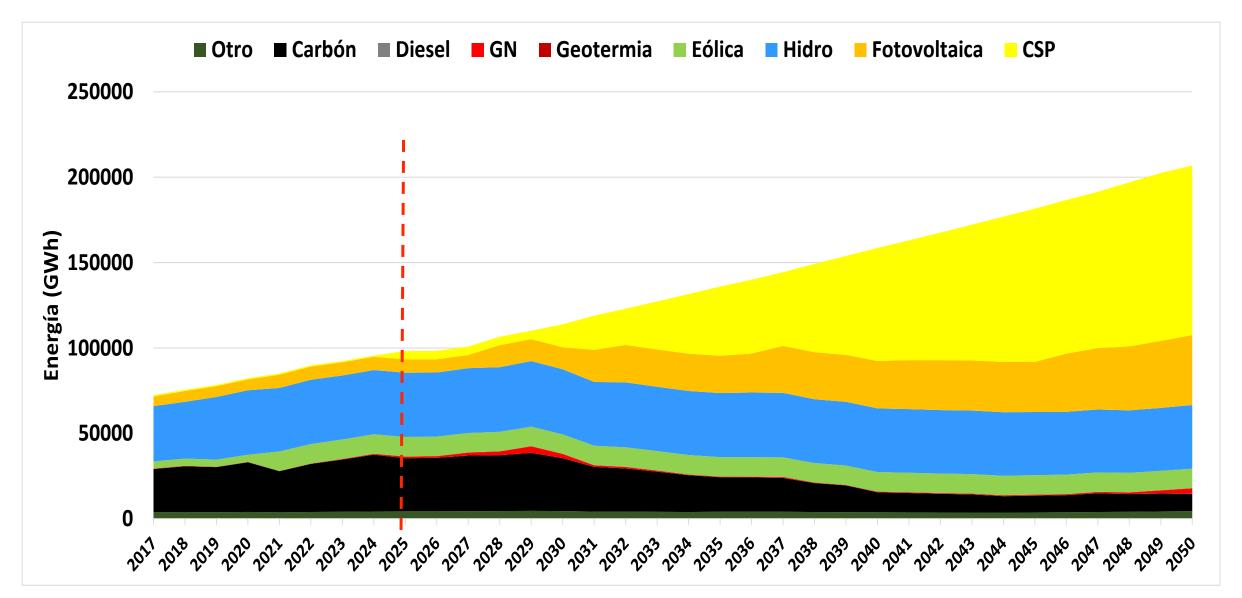
Escenario 1: CSP a 50 USD/MWh



Las plantas CSP para hacen competitivas con las tecnologías base actuales

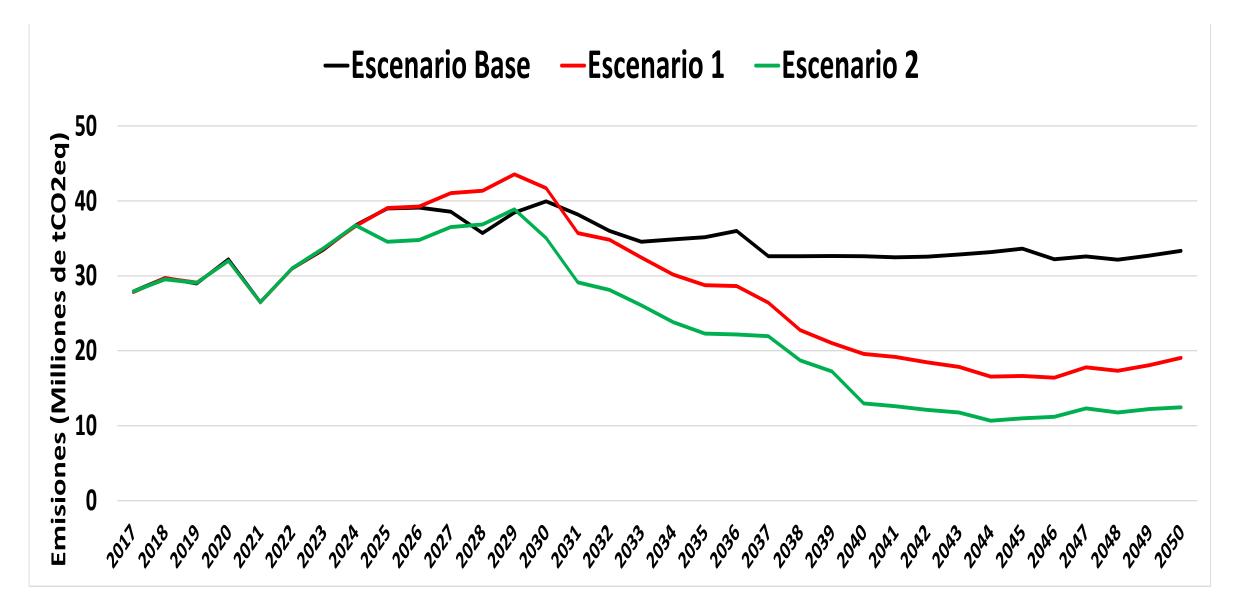
Escenario 1: CSP a 50 USD/MWh

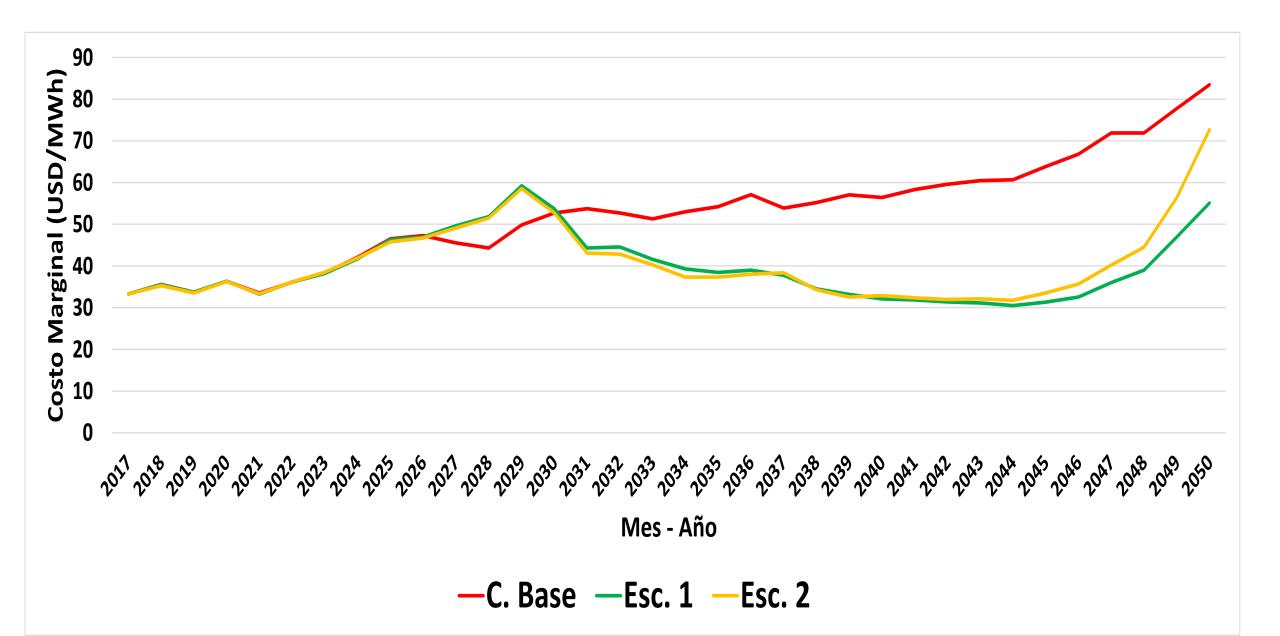
La expansión se recalcula utilizando el modelo de expansión PET con el resto de los parámetros constantes

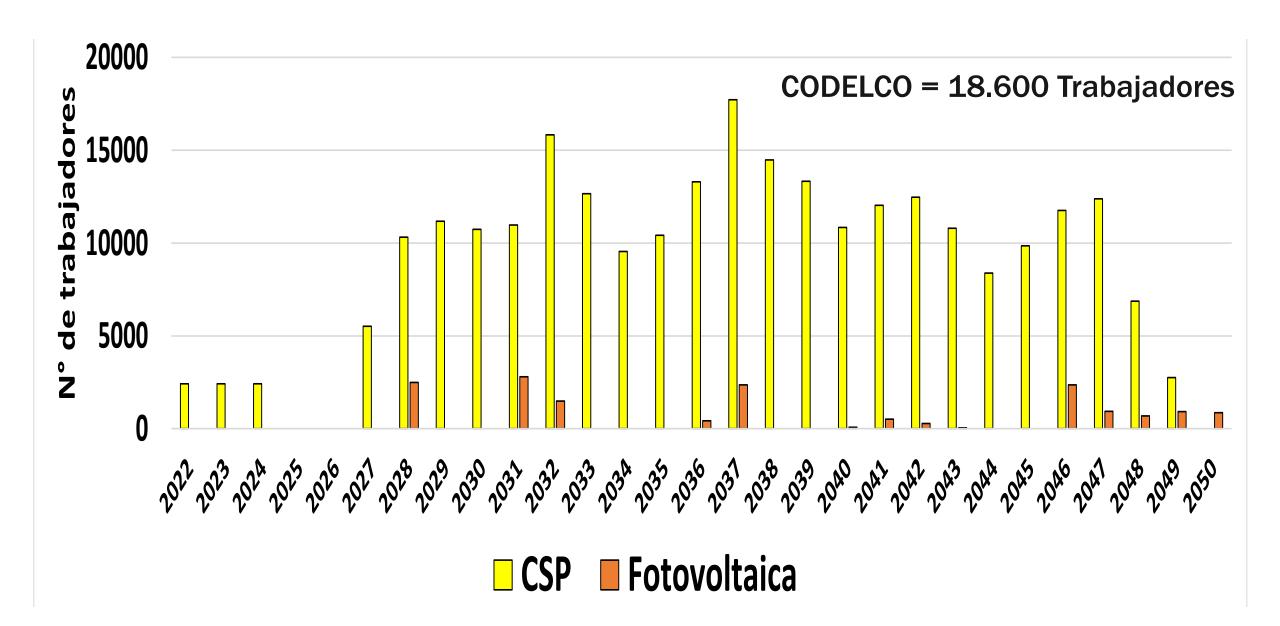


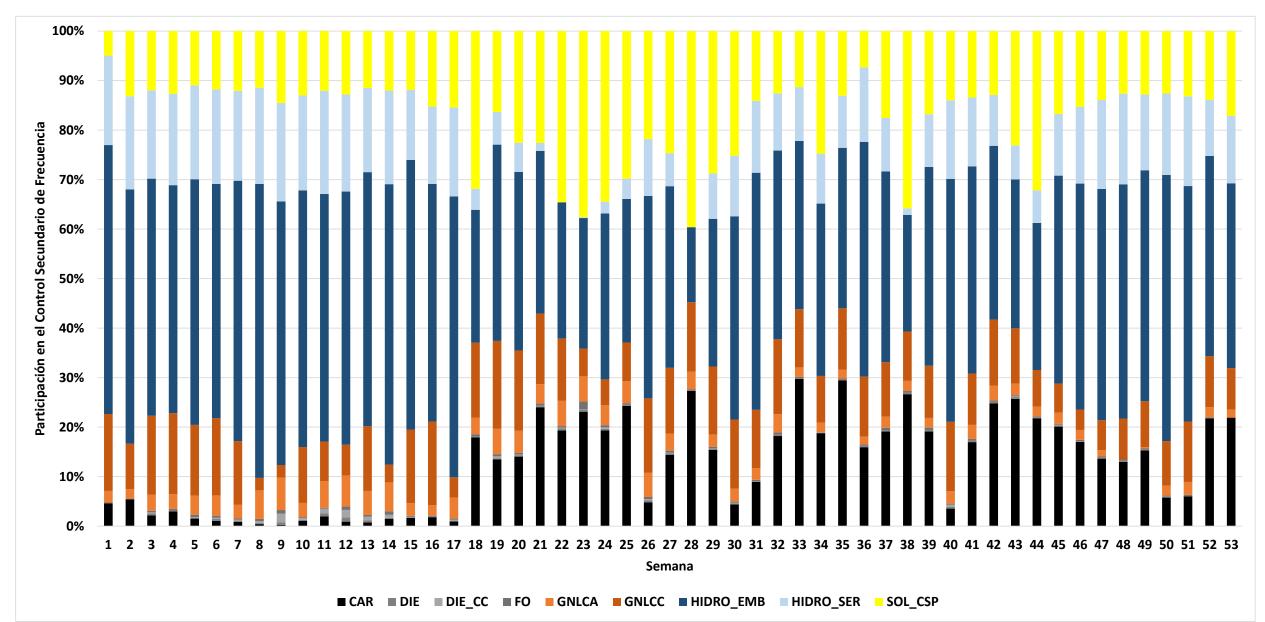
Criterion: Age of coal plants: 0 if project age is more of 40 years, 1 otherwise

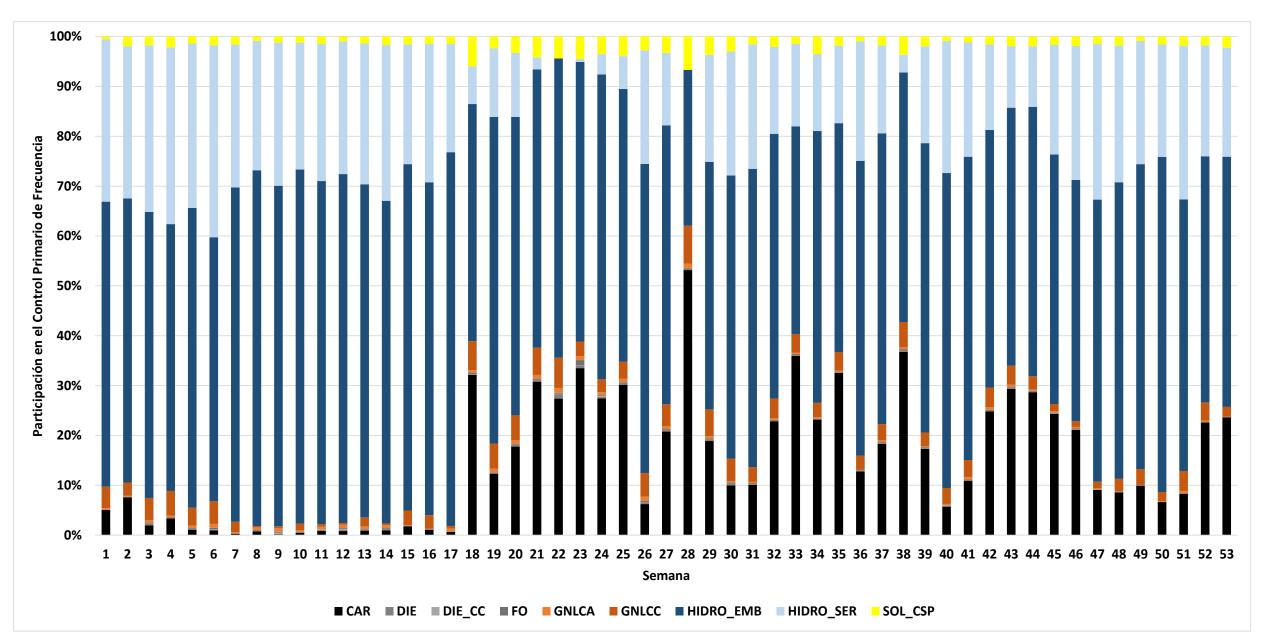
	.~		ء اء ۔				II							احمما		1									اممما									
	Año Entrada →1	2017 20	18 2	2019 20	202	1 2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036 2	037 2	2038	2039	2040 2	2041	2042	2043	2044	2045	2046	2047	2048 2	049 2	.050
VENTANAS_01	1964	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BOCAMINA_01	1970	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
VENTANAS_02	1977	1	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
U12	1983	1	1	1	1	1 1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
U13	1985	1	1	1	1	1 1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
U14	1987	1	1	1	1	1 1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
U15	1990	1	1	1	1	1 1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CTM1	1995	1	1	1	1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NTO1	1995	1	1	1	1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
GUACOLDA_01	1996	1	1	1	1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
GUACOLDA_02	1996	1	1	1	1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NTO2	1997	1	1	1	1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
CTM2	1998	1	1	1	1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
CTTAR	1999	1	1	1	1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0
GUACOLDA_03	2009	1	1	1	1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
GUACOLDA_04	2010	1	1	1	1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
NUEVA_VENTANAS	2010	1	1	1	1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
ANG_I	2011	1	1	1	1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
ANG_II	2011	1	1	_1	1	1 _ 1	1	_ 1	1	1	1	1	_ 1	1	1	1	1	_ 1	_ 1	_1	1	1	1	_1	_ 1	1	1	1	1	1	1	1	1	1
СТА	2011		1 '	35	90			/ i	ng		1 1	26	h	ρt	W	24		24	1)9	ar	16	1	Q ₁	LS	1	1	1	1	1	1	1	1	1
СТН	2011	1	1		I	1 1	1	1	I		111		7		1		1				q,	I	1			1	1	1	1	1	1	1	1	1
BOCAMINA_02	2012	1	1 -		_1 _	1 _ 1	1	£ 1	L L 1	_ 1	_ 1	1	1	1	_1	1	1	_1	1	_1	1	_ 1	1	1	1	_1	_1	1	L 1	. A		= 1	1	1
SANTA_MARIA	2012	1	1		e 2	126	; 0	1	m			PI	ai	113	V	VII			16	S \$	U			<u>4</u> [1	٧G	aı	S ₁	DY	4	U	50	1	1
CAMPICHE	2013	1	1	1	1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
GUACOLDA_05	2016	1	1	1	1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
COCHRANE_1	2016	1	1	1	1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
COCHRANE_2	2016	1	1	1	1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
IEM	2018	1	1	1	1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1


Escenario 2: retiro por antigüedad

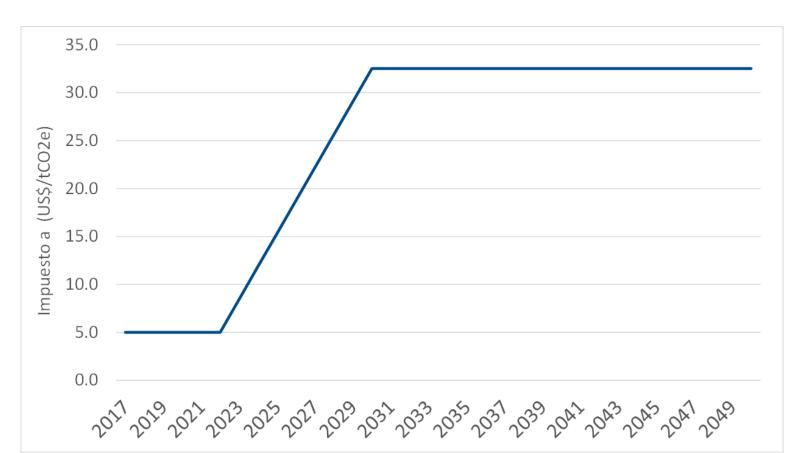

Comparación de emisiones de tCO2eq


Costos marginales anuales promedios

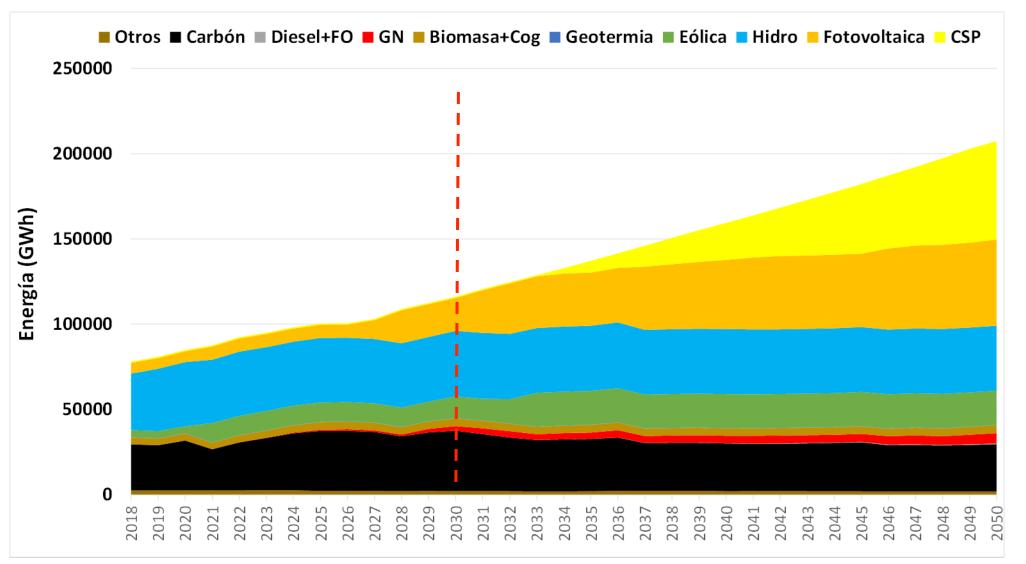

Mano de obra requerida anualmente por Escenario 2


Reserva Secundaria 2030

Reserva Primaria 2030

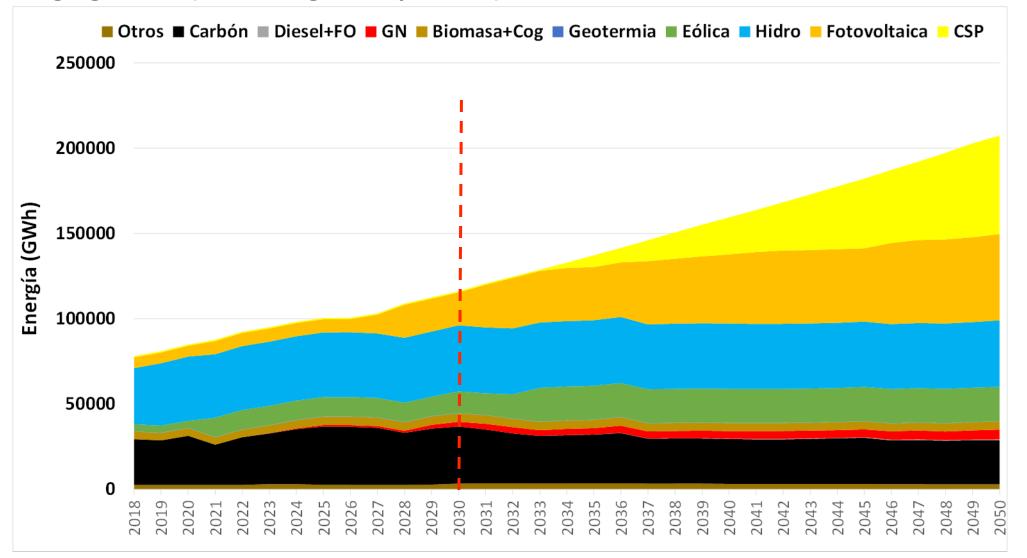

- Factor de emisión de central que opera con carbón varía entre 0,9 y 1,3 tCO2/
 MWh
- Factor de emisión de central que opera con GNL varía entre 0,4 (ciclo combinado)
 y 0,7 tCO2e/MWh (ciclo abierto)
- Impacto del impuesto en despacho de centrales depende de la diferencia entre costo variable de centrales termoeléctrica (y de evolución de precio de combustibles)
- Por ejemplo, Guacolda #3 tiene costo variable de 41 US\$/MWh, mientras que San Isidro tiene un costo variable 62 US\$/MWh → Diferencia de 20 US\$/MWh
- Para cambiar orden de mérito de centrales anteriores impuesto debería tener un valor por sobre 40 US\$/tCO2 (aproximadamente)

 Ejercicio número basado en escenario B del Planificación Energética de Largo Plazo (PELP)


Se incrementa impuesto hasta alcanzar costo social de 32,5 US\$/tCO2e en año

2030

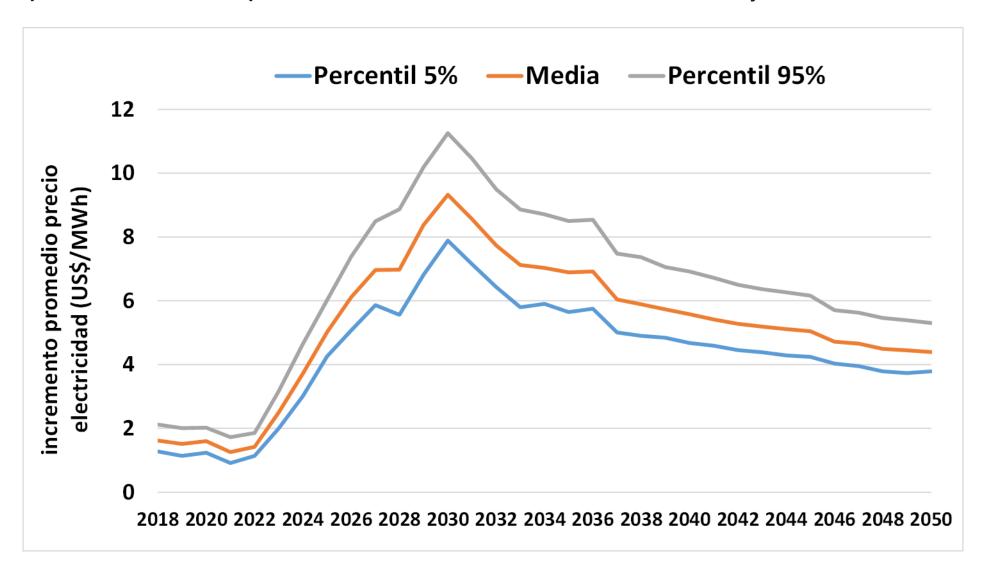
Energía generada por tecnología, sin impuesto a las emisiones de CO2 en costo variables de centrales


Caso B de la PELP (Min. Energía)

Fuente: Centro de Energía utilizando modelo PLP

Promedio despacho por hidrología (55)

Energía generada por tecnología, incluyendo impuesto a las emisiones de CO2 en costo variables de centrales


Fuente: Centro de Energía utilizando modelo PLP

No se observan cambios significativos

Impacto en precio promedio de electricidad

- Impacto en precio promedio de electricidad (impuesto/total generación)
- Impacto sobre clientes que tienen contrato con centrales a carbón es mayor

Análisis de resultados

- Impuesto tiene poco impacto en despacho de centrales, incluso para valores iguales al precio social del carbono (sujeto a evolución precio combustibles)
- Impacto tiene poco impacto en reducción de emisiones de GEI de centrales a carbón actualmente en operación
- Recaudación fiscal se podría utilizar para financiar medidas de mitigación de otros sectores (Ejemplo: eficiencia energética)
- A nivel internacional existen otros instrumentos para reducir emisiones del sector generación eléctrica, por ejemplo, Sistema de Emisiones
 Transables (ETS o cap and trade)

Pago por potencia de suficiencia

Impacto de retirar pago por potencia de suficiencia a centrales carboneras

Nombre	Pmax (MW)	Psuficiencia preliminar	Psuficiencia definitiva	Razon (Pmax/Psufiencia definitiva)	Ingreso anual (millon US\$)	Impacto en costo medio de desarrollo
BOCAMINA	130	119.2	76.6	59%	7.6	(US\$/MWh) 7.8
BOCAMINA II	350	316.3	183.45	52 %	18.1	7.0
GUACOLDA 1	152	129.5	95.19	63%	9.4	8.3
GUACOLDA 2	152	137.5	100.15	66%	9.9	8.7
GUACOLDA 3	152	133.9	83.93	55%	8.3	7.3
GUACOLDA 4	152	133.5	99.58	66%	9.8	8.7
GUACOLDA 5	152	130.4	96.76	64%	9.6	8.4
NUEVA VENTANAS	272	90.8	162.63	60%	16.1	7.9
VENTANAS 1	120	173.8	60.64	51 %	6.0	6.7
VENTANAS 2	220	238.9	114.77	52 %	11.3	6.9

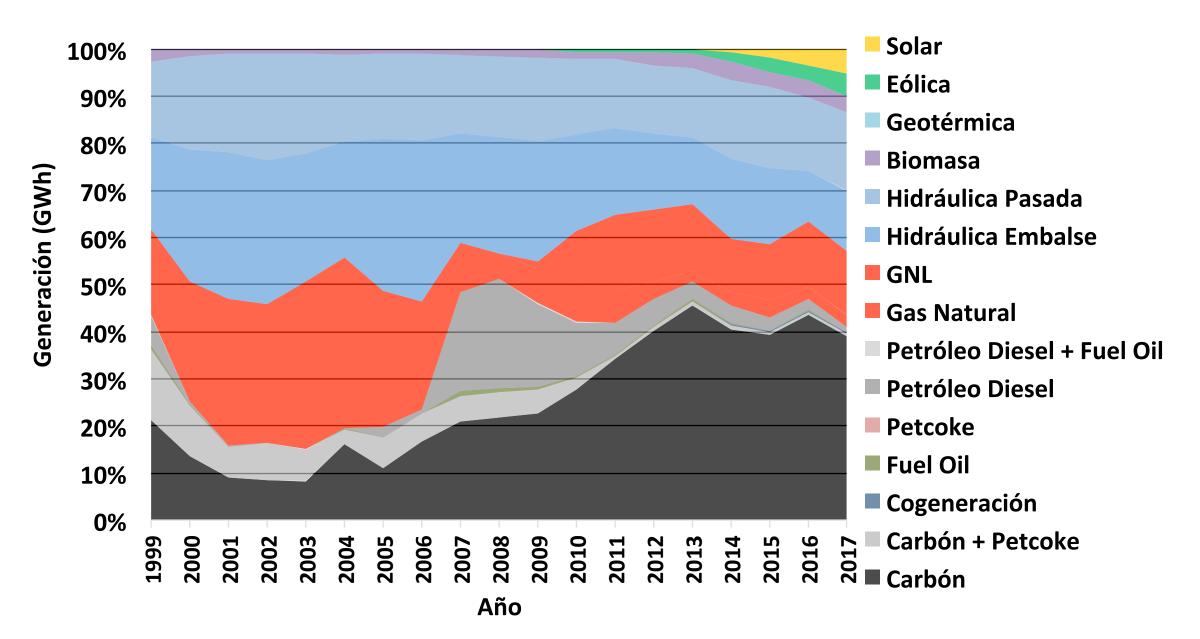
Fuente: Potencia de suficiencia obtenida de informe Coordinador Eléctrico Nacional

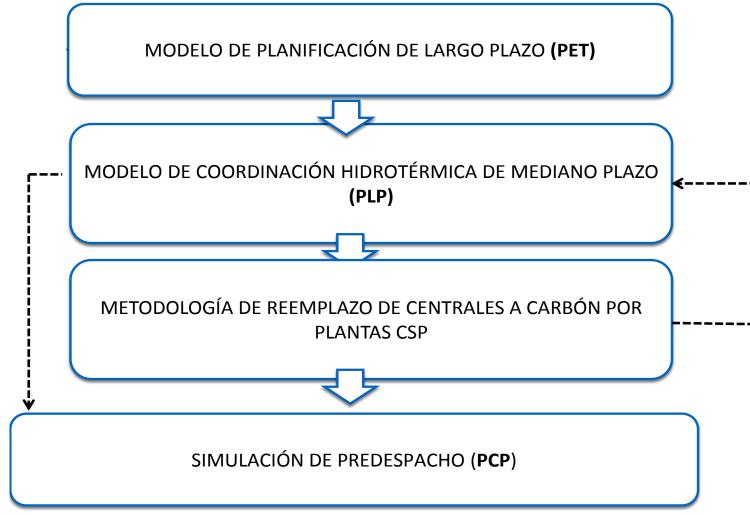
Conclusiones

- El análisis cuantitativo permiten analizar los efectos de diferentes mecanismos de descarbonización en el sistema eléctrico nacional en el corto y largo plazo
- De los diferentes mecanismos estudiados, competencia y retiro programado, se observa que al menos la combinación de CSP y otras energías renovables permiten desplazar una gran parte de la capacidad de carbón actualmente instalada.
- Para llegar a un nivel de descarbonización total se requieren mecanismos más agresivos que el retiro por antigüedad o la aparición de tecnologías competitivas por separado
- Los requerimientos de seguridad del sistema pueden ser igualmente satisfecha con nuevas tecnologías como CSP, que además generan externalidades positivas como mano de obra para su desarrollo

Trabajo Futuro

- Aplicar la metodología desarrollada o otros escenarios de descarbonización
- Incorporar nuevas tecnologías competitivas a futuro (PV + Baterias)
- Mejorar los métodos cuantitativos utilizando con resolución horaria en el largo plazo para el análisis de nuevas tecnologias
- Analizar estructuras de mercado para un régimen de integración regional, alta penetración renovable, nuevas tecnologías y costos marginales exiguos.

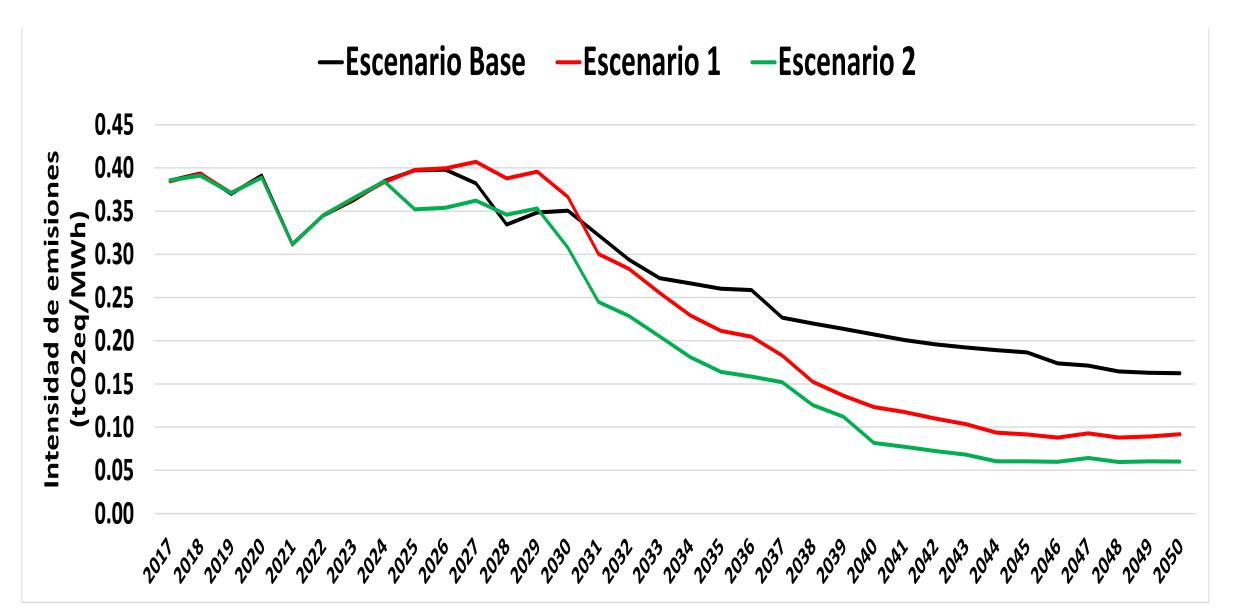

Análisis de escenarios de decarbonización Lecciones aprendidas


Introducción

Metodología de análisis de escenarios de descarbonización

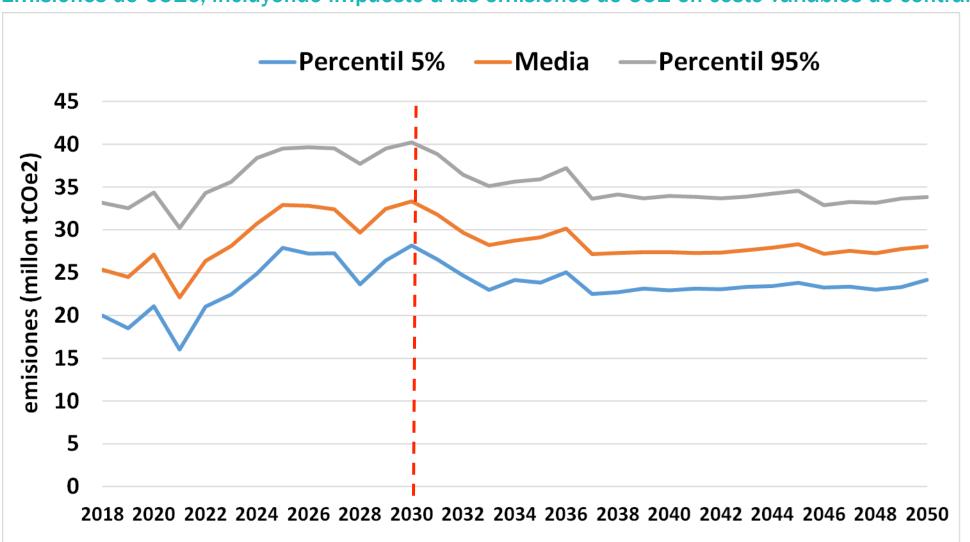
Fuente: Centro de Energía Universidad de Chile

Comparación de escenarios de descarbonización



Toopología	Ene	Energía (GWh) año 2035									
Tecnología	Caso Base	Escenario 1	Escenario 2								
Carbón	30.574	26.043	20.188								
GN	3.731	216	236								
Diésel	31	-	-								
Hidro	38.170	37.548	37.491								
Eólica	19.912	11.395	11.395								
Geotermia	167	167	167								
Fotovoltaica	31.169	21.845	21.845								
CSP	6.974	34.490	40.506								
Otro	4.412	4.195	4.090								

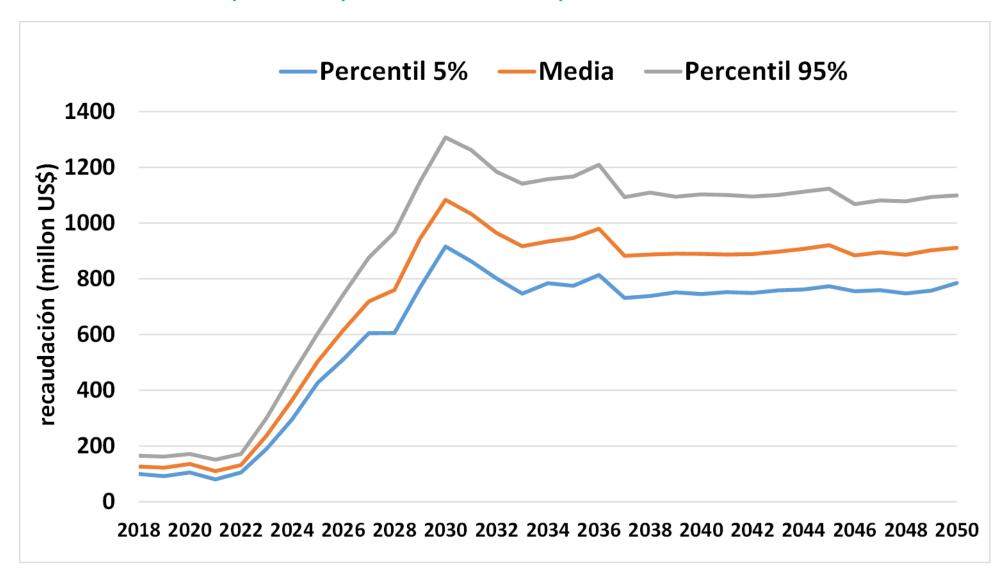
Toonología	Ene	Energía (GWh) año 2050									
Tecnología	Caso Base	Escenario 1	Escenario 2								
Carbón	27.738	16.885	10.140								
GN	6.013	1.185	3.102								
Diésel	412	2	65								
Hidro	37.975	36.310	37.264								
Eólica	20.127	11.395	11.395								
Geotermia	167	167	167								
Fotovoltaica	50.552	40.942	40.942								
CSP	57.728	95.974	99.318								
Otro	4.613	4.369	4.427								


Comparación de intensidad de emisiones de CO2eq

Emisiones de CO2e, incluyendo impuesto a las emisiones de CO2 en costo variables de centrales

Fuente: Centro de Energía utilizando modelo PLP

Variabilidad debido a incertidumbre hidrológica (55 hidrologías)


■ Comparación caso incluyendo impuesto en costo variable vs caso sin incluir impuesto (situación actual)

	Percentil 5%	Media	Percentil 95%	Percentil 5%	Media	Percentil 95%			
Año	Incluye im	npuesto en cost	o variable	Sin incluir impuesto en costo variable					
2025	27.9	32.9	39.5	28.6	33.8	39.9			
2030	28.2	33.3	40.2	30.6	35.3	41.4			

Impacto en recaudación fiscal

Recaudación fiscal suponiendo que se incrementa impuesto a las emisiones

